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Dynamic targeting enables domain-general
inhibitory control over action and thought by the
prefrontal cortex
Dace Apšvalka 1,6✉, Catarina S. Ferreira 2,6, Taylor W. Schmitz3, James B. Rowe 1,4,5 &

Michael C. Anderson 1,5✉

Over the last two decades, inhibitory control has featured prominently in accounts of how

humans and other organisms regulate their behaviour and thought. Previous work on how the

brain stops actions and thoughts, however, has emphasised distinct prefrontal regions sup-

porting these functions, suggesting domain-specific mechanisms. Here we show that stop-

ping actions and thoughts recruits common regions in the right dorsolateral and ventrolateral

prefrontal cortex to suppress diverse content, via dynamic targeting. Within each region,

classifiers trained to distinguish action-stopping from action-execution also identify when

people are suppressing their thoughts (and vice versa). Effective connectivity analysis reveals

that both prefrontal regions contribute to action and thought stopping by targeting the motor

cortex or the hippocampus, depending on the goal, to suppress their task-specific activity.

These findings support the existence of a domain-general system that underlies inhibitory

control and establish Dynamic Targeting as a mechanism enabling this ability.
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Well-being during difficult times requires the ability to
stop unwelcome thoughts. This vital ability may be
grounded in inhibitory control mechanisms that also

stop physical actions1–5. According to this hypothesis, the right
lateral prefrontal cortex (rLPFC) supports self-control, allowing
people to regulate their thoughts and behaviours when fears,
ruminations, or impulsive actions might otherwise hold sway6–8.
This proposal rests on the concept of inhibitory control, a puta-
tive domain-general control mechanism that has attracted much
interest in psychology and neuroscience over the last two
decades9–19 (for early work, see ref. 20). Despite the widespread
and enduring interest, direct evidence for the neural basis of
domain-general inhibitory control is missing: no study has shown
a control region that dynamically shifts its connectivity to sup-
press local processing in diverse cortical areas depending on the
stopping goal—a fundamental capability of this putative
mechanism. Stopping actions and memories, for example,
requires that an inhibitory control region target disparate spe-
cialised brain areas to suppress motoric or mnemonic processing,
respectively. We term this predicted capability dynamic targeting.
Here, we tested the existence of dynamic targeting by asking
participants to stop unwanted actions or thoughts. Using func-
tional magnetic resonance imaging (fMRI) and pattern classifi-
cation, we identified prefrontal regions that contribute to
successful stopping in both domains. Critically, we then tested
whether people’s intentions to stop actions or thoughts were
reflected in altered effective connectivity between the domain-
general inhibition regions in the prefrontal cortex with memory
or motor-cortical areas. By tracking the dynamic targeting of
inhibitory control in the brain, we provide a window into
humans’ capacity for self-control over their thoughts and
behaviours21.

Our analysis builds on evidence that two regions of the rLPFC
may contribute to stopping both actions and thoughts: the right
ventrolateral prefrontal cortex (rVLPFC) and the right dorso-
lateral prefrontal cortex (rDLPFC). For example, stopping motor
actions activates rVLPFC (especially in BA44/45, pars oper-
cularis), rDLPFC, and anterior insula10,22–26. Disrupting rVLPFC
impairs motor inhibition, whether via lesions27, transcranial
magnetic stimulation28, intracranial simulation in humans29 or
monkeys30, establishing its causal role in stopping. RVLPFC thus
could promote top-down inhibitory control over actions, and
possibly inhibitory control more broadly3,10,31–33. Within-
subjects comparisons also have identified shared activations in
rDLPFC (BA 9/46) that could support a domain-general
mechanism that stops both actions and thoughts5.

If these rLPFC regions play a causal role in how domain-
general inhibitory control achieves stopping, the question arises
as to how inhibition is directed at actions or thoughts. In our
dynamic targeting hypothesis, this function is achieved by
domain-general sources of inhibitory control in the LPFC that
interact with specialised domain-specific target regions, the
activity of which may require stopping. Here we tested whether
any regions within the rLPFC had the dynamic targeting capacity
needed to support domain-general inhibitory control.

Dynamic targeting requires that a candidate inhibitory control
system exhibit five core attributes during stopping (see Fig. 1).
First, stopping in diverse domains should engage the proposed
source of control, with activation patterns within this region
generalising over the specific demands of each stopping type.
Consequently, activation patterns during any one form of stop-
ping should contain information shared with inhibition in other
domains. Second, the engagement of the proposed prefrontal
source should track indices of inhibitory control in diverse
domains, demonstrating its behavioural relevance. Third,
stopping-related activity in the prefrontal sources should co-

occur with interrupted functioning in domain-specific target sites
representing thoughts or actions. Fourth, the prefrontal source
should exert top-down inhibitory coupling with these target sites,
providing the causal basis of their targeted suppression. Finally,
dynamic targeting requires that inhibitory coupling between
prefrontal source and domain-specific target regions be selective
to current goals. Note that domain-general inhibitory control
does not require direct monosynaptic connections between the
source(s) and target(s) of control.

These five attributes of dynamic targeting remain unproven,
despite the fundamental importance of inhibitory control.
Research on response inhibition and thought suppression instead
has focused on how the prefrontal cortex contributes to stopping
within each domain9,34–36. For example, research on thought
suppression has revealed top-down inhibitory coupling from the
anterior rDLPFC to the hippocampus, and to several cortical
regions representing specific mnemonic content8,37–41. Moreover,
suppressing thoughts down-regulates hippocampal activity, with
the down-regulation linked to hippocampal GABA and forgetting
of the suppressed content8. Top-down modulation of actions by
rVLPFC suggests that premotor and primary motor cortex are
target sites42–44. Action stopping engages local intracortical
inhibition within M1 to achieve stopping45–48, with a person’s
stopping efficacy related to local GABAergic inhibition49. Rein-
forcing this domain-specific focus, research has posited that
control originates from different prefrontal regions in these two
domains suggesting separate control abilities: whereas the right
anterior DLPFC has received attention in work on thought
suppression2, the right VLPFC has been the focus in work on
response inhibition10,11, despite both regions often arising in both
stopping tasks22. To integrate research from these separate
domains, we sought to determine which of these candidate
sources of domain-general inhibitory control participate in
stopping both actions and thoughts and which exhibit the key
attributes of dynamic targeting.

Although dynamic inhibitory targeting has not been tested,
some large-scale networks flexibly shift their coupling with
diverse brain regions that support task performance. Diverse tasks
engage a frontoparietal network50–53, which exhibits greater
cross-task variability in coupling with other regions than other
networks51,54. Variable connectivity may index this network’s
ability to reconfigure flexibly and coordinate multiple task ele-
ments in the interests of cognitive control51. A cingulo-opercular
network, including aspects of rDLPFC and rVLPFC, also is tied to
cognitive control, including conflict and attentional
processing55–61, with the prefrontal components exhibiting high
connectivity variability over differing tasks54. However, previous
analyses of these networks do not address dynamic inhibitory
targeting: Dynamic targeting requires not merely that the pre-
frontal cortex exhibits connectivity to multiple regions, but that
the connectivity includes a top-down component that suppresses
target regions.

We sought to test the presence of dynamic targeting through
the properties of prefrontal, motor and hippocampal networks
(see Fig. 1 for an overview of our approach). We combined,
within one fMRI session, a cognitive manipulation to suppress
unwanted thoughts, the Think/No-Think paradigm6,62, with
motor action stopping in a stop-signal task63,64. This design
provided the opportunity to identify co-localised activations of
domain-general inhibitory control in prefrontal sources and
observe their changes in effective connectivity with motor cortical
and hippocampal targets. For the thought suppression task, prior
to scanning, participants learned word pairs, each composed of a
reminder and a paired thought (Fig. 2). During thought-stopping
scanning blocks, on each trial, participants viewed one of these
reminders. For each reminder, we cued participants either to
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retrieve their associated thought (Think trials) or instead to
suppress its retrieval, stopping the thought from coming to mind
(No-Think trials). For the action stopping a task, prior to scan-
ning, participants were trained to press one of two buttons in
response to differently coloured circles8. During the action
stopping scanning blocks, participants engaged in a speeded
motor response task that, on a minority of trials, required them to
stop their key-press following an auditory stop signal. Action and
thought-stopping blocks alternated, to enable quantification of
domain-general and domain-specific activity and connectivity.

The dynamic targeting hypothesis predicts that stopping
actions and thoughts call upon a common inhibition mechanism.
For thought suppression, we predicted that the reminder would
activate the associated thought, triggering inhibitory control to
suppress hippocampal retrieval1,65. We predicted that this dis-
ruption would hinder later retrieval of the thought, causing
suppression-induced forgetting. To verify this, we tested all pairs
(both Think and No-Think pairs) after scanning, including a
group of pairs that had been learned, but that was omitted during
the Think/No-Think task, to estimate baseline memory perfor-
mance (Baseline pairs). Suppression-induced forgetting occurs
when final recall of No-Think items is lower than Baseline

items62. For action stopping, we proposed that the Go stimulus
would rapidly initiate action preparation, with the presentation of
the stop signal triggering inhibitory control to suppress motor
processes in M163,64. If the capacities to stop actions and thoughts
are related, more efficient action stopping, as measured by stop-
signal reaction time, should correlate with greater suppression-
induced forgetting, at least in healthy samples.

Our primary goal was to determine whether prefrontal source
regions meet the five core attributes for dynamic targeting. To test
this, we first identified candidate regions that could serve as
sources of control. We isolated prefrontal regions that were more
active during the action and thought stopping, compared to their
respective control conditions (e.g., “Go” trials, wherein partici-
pants made the cued action; or Think trials, wherein they
retrieved the cued thought) and then performed a within-subjects
conjunction analysis on these activations. We performed a par-
allel conjunction analysis on independent data from two quan-
titative meta-analyses of fMRI studies that used the Stop-signal or
the Think/No-Think tasks, to confirm the generality of the
regions identified. We next tested whether activation patterns
within these potential source regions generalised over the parti-
cular stopping domains. We used multi-voxel activation patterns
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Fig. 1 The five attributes of dynamic targeting. Schematic of the five attributes of domain-general inhibitory control by dynamic targeting and methods
employed (teal colour boxes) to test the attributes. Attributes 1–2 relate to the existence of domain-general inhibitory sources. The predicted location of
such sources was in the right lateral PFC. We present the two attributes on the right side to match the visualised location of the expected sources. To test
the domain-generality of inhibitory sources (attribute 1), we performed univariate and meta-analytic conjunction analysis of the No-Think > Think and
Stop > Go contrasts, and cross-task multi-voxel pattern analysis (MVPA). To test the behavioural relevance (attribute 2), we related inhibitory activations
within the identified domain-general regions to individual variation in inhibition ability (stop-signal reaction time and suppression-induced forgetting) using
behavioural partial-least squares and MVPA. Attributes 3–5 relate to the existence of domain-specific target sites that are dynamically modulated by the
domain-general sources. Our a priori assumption was that suppressing actions and thoughts would target M1 and hippocampus, respectively. To test the
suppression of function within the target sites (attribute 3) we performed a region of interest (ROI) analysis expecting down-regulation within the target
sites, and cross-task MPVA expecting distinct activity patterns across the two task domains. To test whether the prefrontal domain-general sources exert
top-down modulation of the target sites (attribute 4) dynamically targeting M1 or the hippocampus depending on the process being stopped (attribute 5),
we performed dynamic causal modelling.
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to train a classifier to discriminate stopping from going in one
modality (e.g., action stopping), to test whether it could identify
stopping in the other modality (e.g., thought suppression).
Finally, to examine behavioural relevance, we related inhibitory
activations within these meta-analytic conjunction areas to indi-
vidual variation in inhibition ability (e.g., suppression-induced
forgetting and stop-signal reaction time) using behavioural partial
least squares and multi-voxel pattern analysis. Any region sur-
viving these constraints was considered a strong candidate for a

hub of inhibitory control. We hypothesised that these analyses
would identify the right anterior DLPFC5,6,22,37, and right
VLPFC10,24.

To verify that inhibitory control targets goal-relevant brain
regions during stopping, we next confirmed that a priori
target sites are suppressed in a goal-specific manner. Specifically,
stopping retrieval should down-regulate hippocampal
activity1,4,37,39–41,65, more than does action stopping. In contrast,
stopping actions should inhibit motor cortex more than does
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Fig. 2 Schematic of the experimental paradigm and procedure. a In the Stop-signal task, the Go stimuli were red, green, blue, and yellow coloured circles.
On Go trials, participants responded by pressing one of the two buttons on a button box according to learned stimulus–response associations. On Stop
trials, shortly after the Go stimulus, an auditory “beep” tone would signal participants to withhold the button press. The stop-signal delay varied
dynamically in 50ms steps to achieve approximately a 50% success-to-stop rate for each participant. b In the Think/No-Think task, participants learned
78 cue-target word pair associations. Sixty of the word pairs were then divided into three lists composed of 20 items each and allocated to the three
experimental conditions: Think, No-Think, and Baseline. During Think trials, a cue word appeared in green, and participants had 3 s to retrieve and think of
the associated target word. On No-Think trials, a cue word appeared in red and participants were asked to suppress the retrieval of the associated target
word and push it out of awareness if it popped into their mind. c The procedure consisted of 7 steps: (1) stimulus–response learning for the Stop-signal
task: (2) Stop-signal task practice; (3) encoding phase of the Think/No-Think task; (4) Think/No-Think practice; (5) practice of interleaved Stop-signal and
Think/No-Think tasks; (6) the main experimental phase during fMRI acquisition where participants performed interleaved 30 s blocks of Stop-signal and
Think/No-Think tasks; (7) recall phase of the Think/No-Think task.
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thought stopping8. To determine whether these differences in
modulation arise from inhibitory targeting by our putative
domain-general prefrontal control regions, we used dynamic
causal modelling66. If both DLPFC and VLPFC are involved, as
prior work suggests, we sought to evaluate whether one or both
regions are critical sources of inhibitory control.

Here, we show that stopping unwanted thoughts and actions
engages common regions in the rDLPFC and rVLPFC. Critically,
these regions did not merely share common activation during
these forms of stopping, but also exhibited the five core attributes
needed to infer dynamic targeting, shifting their connectivity to
domain-specific target regions to suppress their regional activity.
These findings confirm central predictions of a domain-general
inhibitory control mechanism and establish the joint role of both
rDLPFC and rVLPFC in achieving this function.

Results
Stopping actions and thoughts recruits right DLPFC and
VLPFC. We first identified brain regions that could provide a
source of inhibitory control during action and thought stop-
ping (Establishing Attribute 1: domain-generality). The
whole-brain voxel-wise conjunction analysis of the Stop > Go
and the No-Think > Think contrasts revealed that both motor
and thought inhibition evoked conjoint activations in the right
prefrontal cortex (PFC), specifically, the rDLPFC (middle
frontal and superior frontal gyri), rVLPFC (ventral aspects of
inferior frontal gyrus, including BA44/45, extending into
insula), precentral gyrus, and supplementary motor area (see
Table 1 and Fig. 3). These findings suggest a role of the right
PFC in multiple stopping domains5,10,67, necessary for
dynamic targeting.

The observation that rDLPFC contributes to inhibitory control
might seem surprising, given the published emphasis on the
rVLPFC in motor stopping studies10,11. It could be that rDLPFC

activation arises from the need to alternate between the Stop-
signal and Think/No-Think tasks, or from carryover effects
between tasks. We, therefore, compared the activations observed
in our within-subjects conjunction analysis to a meta-analytic
conjunction analysis of independent Stop-signal (N= 40) and
Think/No-Think (N= 16) studies (see the “Methods” section)
conducted in many different laboratories with different variations
on the two procedures (see ref. 22 for an earlier version with fewer
studies). The meta-analytic conjunction results were highly
similar to our within-subjects results, with conjoint clusters in
matched regions of DLPFC, VLPFC (BA44/45, extending into
insula), right anterior cingulate cortex, and right basal ganglia
(see Table 1 and Fig. 3). Notably, in both the within-subjects and
meta-analytic conjunctions, the domain-general activation in
rDLPFC did not spread throughout the entire right middle frontal
gyrus but was confined to the anterior portion of the rDLPFC,
spanning BA9/46 and BA10. The convergence of these conjunc-
tion analyses suggests that the involvement of the rDLPFC, and
our findings of conjoint activations across the two stopping
domains more broadly, do not arise from the specific procedures
of the stopping tasks or to carryover effects arising from our
within-subjects design; rather, they indicate a pattern that
converges across laboratories and different experimental
procedures.

The domain-general stopping activations included areas out-
side of the prefrontal cortex (see Table 1 and Fig. 3). Although
not the focus on the current investigation, we characterised these
activations in relation to large-scale brain networks, using a
publicly available Cole-Anticevic brain-wide network partition
(CAB-NP)68. We used the Connectome Workbench software69 to
overlay our activations over the CAB-NP to estimate the parcel
and network locations of our clusters. Domain-general clusters
primarily were in the Cingulo-Opercular (CON) and Frontopar-
ietal (FPN) networks (86% of parcels fell within these two

Table 1 Within-subjects and meta-analysis domain-general inhibition-induced activations (Stop > Go and No-Think > Think).

Hemisphere Region ~BA Network MNI of the peak Volume (mm3)

x y z

Within-subjects, Stop > Go & No-Think > Think
Right Inferior frontal gyrus (VLPFC) Insula 44, 45 CON, FPN 45 18 8 5366
Right Inferior parietal lobule 40 CON, FPN, PMM 63 −42 41 3611
Right Supplementary motor area 6, 8 CON, FPN, LAN 15 18 64 2498
Right Middle frontal gyrus (DLPFC)

Superior frontal gyrus (DLPFC)
9, 10, 46 CON 33 42 23 1654

Right Precentral gyrus 6 CON, FPN, LAN 42 3 41 945
Left Inferior parietal lobule 40 CON, FPN −60 −48 41 641
Meta-analysis, Stop > Go & No-Think > Think
Right Inferior frontal gyrus (VLPFC) Insula 44, 45 CON, FPN 36 26 0 4523
Right/Left Supplementary motor area 6, 8 CON, FPN, LAN 14 14 60 3071
Left Inferior frontal gyrus Insula 44, 45 CON, FPN −44 18 0 2970
Right Inferior parietal lobule 40 CON, FPN, PMM 58 −46 34 2633
Right Anterior cingulate cortex 24, 32 CON, FPN 6 22 38 1620
Right Middle frontal gyrus (DLPFC)

Superior frontal gyrus (DLPFC)
9, 10, 46 CON 36 50 22 844

Right Basal ganglia 16 8 8 776
Left Inferior parietal lobule 40 CON, FPN −60 −50 34 608
Right Precentral gyrus 6 CON, LAN 44 2 46 270
Right Superior parietal lobule 7 FPN, DAN 34 −48 46 176
Within-subjects & Meta-analysis, Stop > Go & No-Think > Think
Right Inferior frontal gyrus (VLPFC) Insula 44, 45 CON, FPN 45 18 8 2666
Right Inferior parietal lobule 40 CON, FPN, PMM 63 −42 38 1620
Right Supplementary motor area 6, 8 CON, FPN, LAN 15 18 64 1418
Right Middle frontal gyrus (DLPFC) 9, 10, 46 CON 33 39 26 338
Left Inferior parietal lobule 40 CON, FPN −60 −48 41 270
Right Precentral gyrus 6 CON, LAN 42 3 41 135
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networks in the within-subjects conjunction), but also included
Posterior-Multimodal and Language networks parcels (see
Supplementary Table 1 and Supplementary Fig. 1). Of the 21
cortical parcels identified for the within-subjects conjunction (see
Supplementary Table 1), the majority (57%) participated in the
CON, whereas 29% were involved in the FPN; the independent
meta-analysis yielded similar findings (56% vs. 30%; see
Supplementary Table 2 and Supplementary Fig. 2). Our main
right prefrontal regions both featured parcels from the CON;
however, whereas rDLPFC was located solely in the CON (in both
the within-subjects and meta-analytic conjunctions), the rVLPFC
region also included parcels from the FPN.

Together, these findings confirm the role of both the right
anterior DLPFC and rVLPFC for both motor and memory
inhibition, consistent with prior evidence of a causal role of these
regions in the stopping function of inhibitory control27–30.
Moreover, they show that stopping recruits a larger network of
regions, dominated by the CON, and to a lesser degree, FPN.
These findings suggest that to achieve stopping, domain-general
inhibitory control may reflect a special configuration of the CON
that includes elements of the FPN and other networks. Notably,
key regions of the FPN were absent from all analyses (no
suprathreshold activations), including the large middle frontal
region often taken as a hallmark of domain-general cognitive
control51,52.

Action and thought stopping abilities are related. We next
confirmed that action-stopping efficiency was associated with
successful thought suppression. To quantify action stopping
efficiency, we computed stop-signal reaction times (SSRTs) using
the consensus standard integration method64. We confirmed that
the probability of responding to Stop trials (M= 0.49, SD= 0.07;
ranging from 0.36 to 0.69) fell within the recommended range for
reliable estimation of SSRTs64, and that the probabilities of Go
omissions (M= 0.002, SD= 0.01) and choice errors on Go trials
(M= 0.04, SD= 0.02) were low. We next verified that the correct
Go RT (M= 600.91 ms, SD= 54.63 ms) exceeded the failed Stop
RT (M= 556.92 ms, SD= 56.77) in all but one participant (9 ms
difference between the failed Stop RT and correct Go RT;
including this participant makes little difference to any analysis,
so they were not excluded). Given that the integration method
requirements were met, the average SSRT, our measure of
interest, was 348.34 ms (SD= 51.25 ms), with an average SSD of
230 ms (SD= 35.68 ms).

We next verified that the Think/No-Think task had induced
forgetting of suppressed items. We compared final recall of No-
Think items to that of Baseline items that had neither been
suppressed nor retrieved (see the “Methods” section). Consistent
with a previous analysis of these data8 and with prior
findings1,62,65,70, suppressing retrieval impaired No-Think recall
(M= 72%, SD= 9%) relative to Baseline recall (M= 77%,

No-Think > Think & Stop > Go
Within-subjects Meta-analysis Within-subjects & Meta-analysis

R R

44

45
IFG

Insula

46

10

40

6

9
6

8

32
24

GyriSulci

Fig. 3 Domain-general inhibition-induced activations. Red: within-subjects (N= 24) conjunction of the Stop > Go and the No-Think > Think contrasts
thresholded at p < 0.05 FDR corrected for whole-brain multiple comparisons. Blue: meta-analytic conjunction of Stop > Go and the No-Think > Think
contrasts from independent 40 Stop-signal and 16 Think/No-Think studies. Yellow: overlap of the within-subjects and meta-analytic conjunctions. Results
are displayed on an inflated MNI-152 surface with outlined and numbered Brodmann areas (top panel), as well as on MNI-152 volume slices (bottom
panel). R: right hemisphere; L: left hemisphere. The brain images were generated using FreeSurfer software (http://surfer.nmr.mgh.harvard.edu), and
PySurfer (https://pysurfer.github.io) and Nilearn (https://nilearn.github.io) Python (Python Software Foundation, DE, USA) packages. Conjunction maps
and visualisation notebook are available on the GitHub repository104 (https://github.com/dcdace/Domain-general/).
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SD= 9%), yielding a suppression-induced forgetting (SIF) effect
(Baseline − No-Think= 5%, SD= 9%, one-tailed t23= 2.55,
p= 0.009, d= 0.521). Thus, suppressing retrieval yielded the
predicted inhibitory aftereffects on unwanted thoughts.

To test the relationship between thought suppression and
action stopping, we calculated a SIF score for each participant by
subtracting No-Think from Baseline recall performance (Baseline
− No-think). This indexes the efficiency with which each
participant could down-regulate later accessibility of suppressed
items, an aftereffect of suppression believed to be sensitive to
inhibitory control62. We then correlated the SSRT and SIF scores
(excluding one bi-variate outlier; see the “Methods” section).
Consistent with a shared inhibition process, better action
stopping efficiency (faster SSRTs) was associated with greater
SIF (rss=−0.492, p= 0.014, see Fig. 4a; A detailed report of
behavioural results is available in the supplementary analysis
notebook).

Although we quantified SSRT with the integration method, this
method may, at times, overestimate SSRTs because it does not
consider times when participants fail to trigger the stopping process,
known as trigger failures71. Trigger failures may arise, for example,
when a participant is inattentive and misses a stop signal. We
recomputed SSRTs using a method that estimates trigger failure rate
and that corrects SSRTs for these events71,72. This method yielded
shorter SSRTs (M= 278.84ms, SD= 41.13ms) than the integration
method (M= 348.34ms), but the relation between stopping
efficiency and SIF was qualitatively similar (r=−0.383, p= 0.065).
This alternate SSRT measure also did not qualitatively alter
brain–behaviour relationships reported in later analyses.

Right DLPFC and VLPFC underlie successful stopping beha-
viour. We next examined whether action stopping and thought
suppression depend on activity in the putative domain-general
regions identified in our conjunction analysis, consistent with
behavioural relevance (Attribute 2). To ensure that our region
was representative of domain-general stopping activations across
published studies and was based on data independent of the
current experiment, we focused on the meta-analytic conjunction
region (n.b. results are similar if the within-subjects conjunction
is used). We tested whether activation in the very same voxels
would predict SIF and SSRT. This test used behavioural PLS
analysis (see the “Methods” section), excluding one behavioural
bi-variate outlier from this analysis (see the “Methods” section),
although the results with the outlier included did not qualitatively
differ.

The first latent variable (LV1) identified by PLS accounted for
78% of the covariance between stopping activations and
behavioural measures of SSRT and SIF. The correlation profile
of LV1 showed a negative correlation with SSRT scores
(r=−0.432, [−0.724, −0.030] bootstrapped 95% CI) and a
positive correlation with SIF scores (r= 0.441, [0.044, 0.729]
bootstrapped 95% CI; Fig. 4b). According to this correlation
pattern, for the brain voxels with significant positive salience, a
higher BOLD signal for the Inhibit > Respond contrast predicted
faster SSRTs (i.e., better action stopping speed) and larger
amounts of SIF (i.e., better memory inhibition). Voxels associated
with such significant positive salience arose across the entire set of
domain-general conjunction regions except for the inferior
parietal lobules (see Table 2 and Fig. 4c). No voxels were
associated with a significant negative salience (i.e., the opposite
pattern). These findings support the hypothesis that the stopping-
evoked activity identified in our conjunction analyses plays
behaviourally important roles both in stopping actions efficiently
and in forgetting unwanted thoughts, a key attribute necessary to
establish dynamic targeting.

Stopping inhibits goal-relevant domain-specific target areas. A
key attribute of dynamic targeting is that the domain-specific
target areas are inhibited in response to activity of the domain-
general source of inhibitory control when the specific task goals
require it (Attribute 3: suppression of function in target regions).
For example, when stopping a motor action is the goal, inhibitory
control processes supported by domain-general source regions in
the prefrontal cortex downregulate activity in M1, cancelling
motor actions73–77; when the goal is to stop memory retrieval,
however, the same prefrontal process downregulates hippocampal
activity, interrupting retrieval1,2,4,7,9,37–39,65,78,79. Previously, we
reported both of the foregoing patterns in a separate analysis of
the current data8. In the analyses below, we reconfirmed these
findings using the left M1 and the right hippocampus ROIs which
we defined specifically for the current analyses (see the “Methods”
section).

Dynamic targeting predicts a crossover interaction such that
action stopping suppresses M1 more than it does the hippocam-
pus, whereas thought stopping should do the reverse. A repeated-
measures analysis of variance (ANOVA) confirmed a significant
interaction between modulatory target regions (M1 vs. hippo-
campus) and stopping modality (stopping actions vs. stopping
thoughts) on the BOLD signal difference between the respective
inhibition and non-inhibition conditions in each modality
(F1,23= 45.99, p < 0.001; Fig. 5a). The main effects were
significant for both the modulatory target regions (F1,23= 10.01,
p= 0.004) and the stopping modality (F1,23= 9.28, p= 0.006).
Post-hoc pairwise comparisons showed that whereas stopping
motor responses (Stop–Go) evoked greater downregulation of the
M1 than the hippocampus ROI (t23= 6.26, p < 0.001, d= 1.279),
suppressing thoughts (No-Think–Think) evoked larger down-
regulation of the hippocampus than the M1 ROI (t23= 3.53,
p= 0.002, d= 0.720). Thus, action stopping and thought
suppression preferentially modulated the left M1 and right
hippocampus, respectively. Critically, these modulations were not
solely produced by up-regulation in the Go or Think conditions,
as illustrated by negative BOLD response during Stop
(t23=−5.08, p < 0.001, d= 1.037) and No-Think (t23=−2.23,
p= 0.018, d= 0.455) conditions (see Fig. 5b). Thus, brain regions
involved in representing the type of content requiring inhibition
for each stopping task showed evidence of interrupted function
during stopping, consistent with the requirements of dynamic
targeting.

Domain general stopping representations in prefrontal cortex.
It is possible that despite sharing activations in the rDLPFC and
rVLPFC, the pattern of activation across voxels within these
regions fundamentally differs for action and thought stopping, a
possibility that cannot be excluded with univariate methods.
However, dynamic targeting predicts similarities in the pattern of
activation observed in prefrontal regions for the two stopping
domains (Attribute 1: Domain-generality). Specifically, domain-
general univariate activations in rDLPFC and rVLPFC should
reflect three types of processes: (a) processes that implement the
domain-general stopping mechanism (domain-general stopping
features); (b) processes that accept domain-specific inputs nee-
ded to drive stopping (input features); and (c) processes that
effectuate stopping through their interaction with domain-
specific posterior cortical or subcortical regions (output fea-
tures). Input, stopping, and output features are each necessary
components of a stopping mechanism with the flexibility to be
triggered by multiple modalities and act on diverse processing
domains. However, aspects of stopping also may be unique to
each domain, yielding a fourth type of process: domain-specific
stopping features. Domain-specific stopping features differ from
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domain-specific output features in that the latter govern the
interaction of the stopping mechanism with posterior-cortical or
subcortical target regions, whereas the former reflect computa-
tions specific to a stopping domain that are local to the prefrontal
source region. Domain-general stopping features should yield
similarities between the multivariate patterns for action and
thought stopping; in contrast, input, output, and domain-specific
stopping features should yield differences in the multivariate

patterns for thought and action stopping, with the relative con-
tributions of each being difficult to disentangle. Cross-modality
decoding should not be possible in domain-specific target
regions, reflecting their specialised involvement in action or
memory stopping. Conversely, between-modality decoding,
reflecting domain-specific features, must exist in the domain-
specific target regions and to some extent in the domain-general
source regions.
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Fig. 4 Domain-general behavioural and brain/behaviour relationships. a and b Source data are provided as a Source Data file. a Better action stopping
efficiency (shorter stop-signal reaction time) was associated with better inhibitory control over thoughts (percentage of items forgotten for No-Think
relative to Baseline conditions at the final recall phase), i.e. suppression-induced forgetting; rss=−0.492, p= 0.014, n= 24. One bivariate outlier is
not displayed on the scatterplot. Shading represents 95% CI. b and c A behavioural partial least squares (PLS) analysis was conducted to identify brain
areas where individual variation in inhibition ability (SSRT and SIF) was related to increased inhibition-induced activity (main effect contrast of
inhibition from the within-subject experiment, masked by the meta-analytic conjunction). b The first latent variable (LV1) identified voxels showing a
significant pattern of brain/behaviour correlations to both SSRT and SIF (error bars indicate bootstrapped 95% CI, n= 5000, *p < 0.05). c The voxel
salience map expressing LV1. Blue: meta-analytic conjunction mask. Red: voxels showing a significant pattern of brain/behaviour correlations as
revealed by the LV1; thresholded at bootstrapped standard ratio 1.96, corresponding to p < 0.05, two-tailed. Results are displayed on an inflated MNI-
152 surface (top panel), as well as on MNI-152 volume slices (bottom panel). R: right hemisphere; L: left hemisphere. The brain images were generated
using FreeSurfer software (http://surfer.nmr.mgh.harvard.edu), and PySurfer (https://pysurfer.github.io) and Nilearn (https://nilearn.github.io)
Python (Python Software Foundation, DE, USA) packages. Conjunction mask, PLS results and visualisation notebook are available on the GitHub
repository104 (https://github.com/dcdace/Domain-general/).
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To identify the predicted cross-modality similarities, within
each subject, we trained a classifier to distinguish Inhibit and
Respond conditions in one modality and tested the ability to
distinguish Inhibit and Respond conditions in the other modality.
We performed the classification analysis on the rDLPFC,
rVLPFC, right hippocampus, and left M1 ROIs (see the
“Methods” section). The analysis revealed that a classifier trained
on one modality could discriminate Inhibition from Respond
conditions in the other modality significantly above chance (50%)
for both rDLPFC (M= 58%, SD= 9%, one-tailed t23= 4.17,
padj= 0.001, d= 0.852) and rVLPFC (M= 60%, SD= 11%, one-
tailed t23= 4.46, padj < 0.001, d= 0.911). This cross-modality
decoding suggests that a domain-general inhibitory control
process contributes to activity in these regions (see Fig. 5c;
cross-modality prediction accuracy is even stronger in early task
blocks—see next section). To identify between-task differences
(the domain-specific features), we trained a classifier to
discriminate Stop from No-Think trials (see the “Methods”
section). The classifier could indeed discriminate action and
thought stopping in both rDLPFC (M= 70%, SD= 13%, one-
tailed t23= 7.37, padj < 0.001, d= 1.504) and rVLPFC (M= 82%,
SD= 11%, t23= 13.89, padj < 0.001, d= 2.835). The superior
discrimination of action and thought stopping in the rVLPFC
compared to rDLPFC was reliable; however, control analyses
matching ROI size eliminated this advantage, suggesting that it
was an artefact of the larger ROI used for rVLPFC (see
Supplementary Fig. 4). It is unclear whether this domain-
specific component in the LPFC reflects evidence for the input
and output features required by the dynamic targeting hypothesis
or instead domain-specific stopping processes, either of which
may be exploited by a classifier to enhance between-modality
prediction performance. The cross-modality prediction findings,
however, clearly confirm predictions of the domain-generality
attribute of dynamic targeting.

In contrast to the patterns observed in the prefrontal cortex, we
observed no evidence of cross-modality decoding in the modality-
specific regions targeted by inhibitory control. This pattern arose
for both right hippocampus (M= 49%, SD= 10%, one-tailed
t23=−0.37, padj= 1, d= 0.075) and also left M1 (M= 48%,
SD= 10, one-tailed t23=−1.16, padj= 1, d= 0.236), in which the
cross-modality classifier accuracy did not significantly differ from
chance performance (see Fig. 5c). An estimated one-sample t-test
Bayes factor (one-tailed; medium prior Cauchy scale 0.707; null/
alternative) suggested that the data were substantially in favour of
the null hypothesis for both the hippocampus (B01= 6.01,
posterior distribution: Median= 0.109, 95% CI= [0.004, 0.385])
and M1 (B01= 9.14, posterior distribution: Median= 0.071, 95%
CI= [0.003, 0.294]). Nevertheless, these putative target regions
responded very differently to the two modalities of inhibitory
control, as evidenced by presence of significant domain-specific
information in each region (Attribute 3: suppression of function).

A classifier could reliably distinguish No-Think trials from Stop
trials within both the right hippocampus (M= 63%, SD= 11%,
t23= 5.89, padj < 0.001, d= 1.202) and left M1 (M= 65%, SD=
12%, t23= 6.56, padj < 0.001, d= 1.338; see Fig. 5c). Again, these
differences may reflect input features (either from perception or
top-down control), output features, or the impact of the domain-
specific inhibition processes on the target regions. Notably,
although comparisons of classification accuracies across ROIs
should be interpreted with caution80, the ability of the classifier to
distinguish No-Think from Stop trials did not vary across our
four ROIs (rDLPFC, rVLPFC, hippocampus, M1) when ROI size
was controlled (see Supplementary Fig. 4). Thus, all ROIs
supported comparable classification performance in domain-
specific classification, making it unlikely that the null classifica-
tion results in the between-domain classifier in the hippocampus
and M1 simply reflect poor signal quality in those target regions.

Because we z-normalised activation within each of these
regions within each task, the ability to distinguish No-Think from
Stop trials was not based on differences in overall univariate
signal, but instead on information contained in distinct patterns
of activity in each task. These findings reinforce the assumption
that the hippocampus and M1 are uniquely affected by thought
and action stopping respectively, as expected for domain-specific
targets of inhibitory control. Taken together, these contrasting
findings from the PFC and domain-specific regions are
compatible with the view that rDLPFC and rVLPFC jointly
contribute to a domain-general stopping process that dynamically
targets different regions, depending on the nature of the content
to be suppressed.

Action stopping representations predict adaptive forgetting.
Because dynamic targeting posits that LPFC contains domain-
general stopping representations, training a classifier to distin-
guish stopping in one domain should predict stopping behaviour
in other domains. For example, the ability of an action stopping
classifier to distinguish when people are suppressing thoughts
raises the intriguing possibility that it also may identify partici-
pants who successfully forget those thoughts (establishing further
evidence of Attribute 2, behavioural relevance). To test this
possibility, we capitalised on an adaptive forgetting phenomenon
known as the conflict reduction benefit (for a review, see6). The
conflict-reduction benefit refers to the declining need to expend
inhibitory control resources that arises when people repeatedly
suppress the same intrusive thoughts. This benefit arises because
inhibitory control induces forgetting of inhibited items, which
thereafter cause fewer control problems. For example, over
repeated inhibition trials, activation in rDPLFC, rVLPFC, and
anterior cingulate cortex decline, with larger declines in partici-
pants who forget more of the memories they suppressed6,81,82. If
an action-stopping classifier detects the inhibition process, two
findings related to conflict-reduction benefits should emerge.

Table 2 Control network regions showing a significant pattern of brain/behaviour correlations as revealed by the first latent
variable of the PLS analysis.

Brain region ~BA MNI of the peak Volume (mm3)

x y z

Right Inferior frontal gyrus (VLPFC) Insula 44, 45 45 21 0 3375
Right Anterior cingulate cortex 24, 32 6 30 34 1418
Left Inferior frontal gyrus Insula 44, 45 −33 21 4 1046
Right/Left Supplementary motor area 6, 8 6 9 64 1013
Right Basal ganglia 15 3 8 709
Right Middle frontal gyrus (DLPFC) 10, 46 33 48 19 304
Right Precentral gyrus 6 42 3 41 68
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First, over Think/No-Think task blocks, the action-stopping
classifier should discriminate thought suppression less well, with
high classification in early blocks that drops as memories are
inhibited. Second, this decline should be larger for people
showing greater SIF.

We examined how accurately an action-stopping classifier
distinguishes No-Think from Think conditions for the 8 fMRI
runs (we note that there were three missing data points for the
8th run and one missing data point for the 7th run due to
exclusion of some functional runs; see Methods). The rDLPFC

showed a robust linear decline (F7,157= 9.61, p= 0.002) in
classification accuracy from the first (M= 77%) to the eighth
(M= 40%) run (see Fig. 6a). This result is consistent with a
conflict-reduction benefit and suggests that domain-general
processes are especially important during early attempts at
thought stopping. The rVLPFC exhibited a marginal linear
decline (F1,157= 2.88, p= 0.092) in classification accuracy from
the first (M= 67%) to the eighth (M= 29%) run (see Fig. 6b).
Critically, for both rDLPFC (rss=−0.676, p < 0.001; Fig. 6c) and
rVLPFC (rss=−0.570, p= 0.004; Fig. 6d), participants showing
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greater SIF exhibited a steeper classification accuracy decline.
This suggests that adaptive forgetting had diminished demands
on inhibitory control as blocks of thought suppression pro-
gressed. Notably, this cross-block decline should reduce the
contribution of domain-general inhibition features to classifiers
trained on all blocks together, deflating cross-domain prediction
accuracy. If so, the cross-domain prediction accuracies reported
for rDLPFC and rVLPFC in the preceding section underestimate
the similarity of action and thought stopping. To further confirm
that the conflict reduction benefit in the thought stopping task
likely arises from a domain-general inhibition process, we related
this decline to individual differences in motor inhibition speed.

Consistent with the involvement of inhibition, the decline in
classifier performance was associated to SSRT for both rDLPFC
(rss= 0.498, p= 0.013; Fig. 6e) and rVLPFC (rss= 0.416,
p= 0.043; Fig. 6f). Together, these findings support the view
that suppressing unwanted thoughts engages a domain-general
inhibition process indexed by action stopping and suggests that
both rDLPFC and rVLPFC support this process.

Prefrontal areas shift coupling to inhibit target regions.
Although rDLPFC and rVLPFC contribute to action and thought
stopping, it remained to be shown whether either or both regions
causally modulate target regions during each task, one of the five
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Fig. 6 Conflict-reduction benefit. a–f Sample size n= 24. Source data are provided as a Source Data file. a, b Accuracy of the action-stopping classifier
(trained to distinguish Stop from Go conditions) to discriminate thought suppression (classifying No-Think as Stop) for each of the fMRI task runs in the
rDLPFC and rVLPFC, respectively. Data are presented as mean values. Shading represents within-subject standard error. Linear decline was assessed by
ANOVA linear contrast. c, d Correlation between the classification accuracy slope across the runs and suppression-induced-forgetting scores. Shading
represents 95% CI. e, f Correlation between the classification accuracy slope across the runs and stop-signal reaction time. Shading represents 95% CI.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27926-w ARTICLE

NATURE COMMUNICATIONS |          (2022) 13:274 | https://doi.org/10.1038/s41467-021-27926-w |www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


key attributes of dynamic targeting (Attribute 4: Causal mod-
ulation). On the one hand, rVLPFC alone might show dynamic
targeting, exerting inhibitory modulation on the hippocampus or
M1 in a task-dependent manner, as emphasised in research on
motor response inhibition10,11; rDLPFC may only be involved to
maintain the inhibition task set in working memory, possibly
exerting a modulatory influence on rVLPFC to achieve this
(rVLPFC alone model). On the other hand, rDLPFC alone might
show dynamic inhibitory targeting, consistent with the emphasis
on the rDLPFC as the primary source of inhibitory control in
research on thought suppression2,6; rVLPFC may only be
involved when attention is captured by salient stimuli83,84, such
as the stop signal or intrusions, possibly exerting a modulatory
effect on rDLPFC to upregulate its activity (rDLPFC alone
model). A third possibility is that rDLPFC and rVLPFC each
contribute to top-down modulation in a content-specific manner,
with only rDLPFC modulating the hippocampus during memory
control, but only rVLPFC modulating M1 during action stopping.
By this independent pathway hypothesis, both structures are
pivotal to inhibitory control functions, but only with respect to
their special domains, contrary to dynamic targeting. Finally,
both rDLPFC and rVLPFC may be involved in dynamic targeting,
modulating both hippocampus and M1 in a task-dependent
manner; they may interact with one another to support stopping
(Parallel modulation hypothesis).

To determine the way that rDLPFC and rVLPFC interact with
each other and with the target regions (M1 and hippocampus),
we analysed effective connectivity between regions using dynamic
causal modelling (DCM, see Methods). DCM accommodates
mono- and poly-synaptic mediation of the causal influence that
prefrontal regions could exert on activity in the hippocampus and
in M19. DCM is ideally suited to test our hypotheses about which
prefrontal regions drive inhibitory interactions, whether these
vary by task context, and whether and how those prefrontal
regions interact with one another to achieve inhibitory control
during stopping.

Our model space included a null model with no modulatory
connections and 72 distinct modulatory models (see Fig. 7a)
differing according to whether the source-target modulation was
bidirectional, top-down, or bottom-up, whether rDLPFC,
rVLPFC or both were sources of modulation, whether rDLPFC
and rVLPFC interacted during inhibition tasks, and whether the
site on which top-down modulation acted was appropriate to the
inhibition task or not. We first compared the null model and
models in which the direction of source-target modulation was
either bidirectional, top-down, or bottom-up (24 models in each
of the three families). The findings from these connectivity
analyses were unambiguous. Bayesian Model Selection (BMS)
overwhelmingly favoured models with bidirectional connections
between the sources (rDLPFC and rVLPFC) and targets (M1 and
hippocampus) with an exceedance probability (EP) of 0.9999. In
contrast, the null modulation, top-down, and bottom-up models
had EP of 0/0.0001/0, respectively (see Fig. 7b). Exceedance
probability refers to the extent to which a model is more likely in
relation to other models considered. The bidirectional modula-
tion confirms the existence of a top-down (our focus of interest)
influence that prefrontal regions exert on activity in the
hippocampus and in M1, alongside bottom-up modulation.

We next compared, within the 24 bidirectional models (models
1–24, see Fig. 7a), whether either rDLPFC or rVLPFC was the sole
dominant top-down source of inhibitory control (rDLPFC only
vs. rVLPFC only models) to models in which both regions
comprised independent modulatory pathways (independent
pathways model) or instead, contributed cooperatively to
achieving top-down inhibitory control (parallel inhibition
model). The BMS overwhelmingly favoured models in which

both rDLPFC and rVLPFC contributed to modulating both the
hippocampus and M1 with an exceedance probability (EP) of
0.9999; in contrast, Independent Pathways, rDLPFC alone, and
rVLPFC alone models had an EP of 0.0001/0/0, respectively (see
Fig. 7c).

We next sought to distinguish subfamilies within this parallel
model (models 9–12, and 21–24, see Fig. 7a) that varied according
to whether and how rDLPFC and rVLPFC interacted during
inhibition: no-interaction at all between rDLPFC and rVLPFC
(none); unidirectional interaction from rVLPFC to rDLPFC
(unidirectional rVLPFC); unidirectional interaction from
rDLPFC to rVLPFC (unidirectional rDLPFC) and bidirectional
interaction (rDLPFC and rVLPFC interact with each other). If
rDLPFC and rVLPFC work as a functional unit to achieve
inhibitory control, one would expect clear evidence that some
form of interaction occurs. Consistent with this view, BMS
strongly favoured models with bidirectional interactions between
the rDLPFC and rVLPFC (EP= 0.91; EP for the none,
unidirectional rDLPFC, and unidirectional rVLPFC being 0.01/
0.07/0.02; see Fig. 7d).

Next, we tested whether inhibitory control is dynamically
targeted to the appropriate target structure (e.g., hippocampus or
M1), depending on which process needs to be stopped (memory
retrieval or action production). According to our hypothesis, the
rDLPFC and rVLPFC should down-regulate hippocampal activity
during thought suppression, but should instead modulate M1,
during action stopping (Attribute 5: Goal Dependence). To test
this goal-dependence, we compared the two remaining models
(12 and 24, see Fig. 7a) within our winning parallel/bidirectional
subfamily. In the “preferred targets”model, rDLPFC and rVLPFC
modulated the hippocampus during thought suppression, but M1
during action stopping; in the “non-preferred targets” model,
these structures modulated content-inappropriate targets (e.g.,
M1 during thought suppression, but hippocampus during action
stopping). BMS strongly favoured the model with preferred
(EP= 0.95) over the non-preferred (EP= 0.05) target modulation
(see Fig. 7e). Indeed, the overall winning model also was strongly
favoured by BMS even when directly assessing all 73 models, side
by side, without grouping them into model families and
subfamilies (BMS= 0.92; see Fig. 7f).

The preferential modulations of hippocampus vs. M1,
depending on whether thoughts vs. actions are to be suppressed,
confirm our key hypothesis that top-down modulation by
rDLPFC and rVLPFC is dynamically targeted depending on
participants’ task goals. However, a winning model with goal-
dependent top-down connectivity to the hippocampus and M1
might be identified for any brain region robustly activated by
both action and retrieval stopping, and not just the rDLPFC and
rVLPFC. To test this possibility, we modified our DCM analysis
by replacing the rDLPFC and rVLPFC nodes with two other
regions from our meta-analytic conjunction analysis as sources of
control. To choose regions, we performed our domain-general
classification analysis on all ten meta-analytic conjunction regions
(see Table 1). Apart from rDLPFC and rVLPFC, only the right
and left inferior parietal lobule (IPL) exhibited significant
domain-general components (see Supplementary Fig. 5). Using
the right and left IPL as sources of control, DCM did not reveal a
model with clear evidence for top-down modulation of
hippocampus and M1 (see Supplementary Fig. 6). Thus, to be
activated by both stopping tasks and to show cross-task decoding
is not sufficient to infer goal-dependent inhibitory modulation of
connectivity. Instead, our results suggest that rDLPFC and
rVLPFC may be particularly important origins of this targeted
signal. Together, the results of the DCM analysis suggest that,
when stopping a prepotent response, rDLPFC and rVLPFC,
interact with each other and are both selectively coupled with M1
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when stopping actions and selectively coupled with the
hippocampus when stopping thoughts: in other words, both
regions manifest dynamic targeting.

Discussion
The current study identified two regions within the right pre-
frontal cortex that show dynamic targeting when stopping
unwanted motor actions and thoughts. The rDLPFC and rVLPFC
exhibited all five attributes needed to infer dynamic targeting.
Both are engaged by diverse domains of inhibitory control, a
finding supported not only by a within-subject conjunction
analysis, but also via a meta-analytical conjunction; both show
evidence of cross-task decoding. Both regions are relevant to

individual variation in inhibitory efficiency in both action stop-
ping and thought suppression. Indeed, the multivariate activation
pattern for action stopping resembled that for thought suppres-
sion sufficiently that it could be used as a proxy to predict how
successfully people had suppressed their thoughts. Both regions
are engaged alongside significant down-regulations in domain-
specific target regions that we predicted a priori likely would
require top-down inhibition; and both prefrontal regions show
top-down effective connectivity with M1 and hippocampus dur-
ing action stopping and thought suppression, supporting a causal
role in their down-regulation. Critically, effective connectivity
from both rDLPFC and rVLPFC to these two target regions
shifted dynamically according to whether participants were
stopping actions or thoughts, as expected of a domain-general
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Fig. 7 DCM model space and results. a DCM analysis determined the most likely inhibition-related interactions between domain-general inhibitory control
source areas (D: rDLPFC, V: rVLPFC) and domain-specific target areas (H: right hippocampus, M: left M1). We compared 73 alternative models grouped
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mechanism that is flexibly targeted to suppress specialised con-
tent in multiple domains.

Based on these and related findings, we propose that anterior
rDLPFC and rVLPFC constitute key hubs for a domain-general
inhibitory control mechanism that can be dynamically targeted to
stop processing of diverse content represented throughout the
brain. This proposal complements recent work positing a broad
prefrontal inhibition mechanism that can interrupt both cogni-
tion and action32,33,85. We focused here on the stopping of simple
manual actions and verbal thoughts. Given this approach, this
study does not address the breadth of thought content that can be
targeted by this mechanism. However, when considered alongside
the growing literature on retrieval suppression, the breadth of
content is considerable. For example, the anterior rDLPFC and
rVLPFC regions identified in the meta-analytic conjunction have
been observed during the suppression of a range of stimuli,
including words1,37,65, visual objects40,41, neutral and aversive
scenes4,38,39,79 and person-specific fears about the future7. In
addition, during retrieval suppression, these frontal regions exert
top-down inhibitory modulation not only of the
hippocampus9,65, but also of other domain-specific content
regions, including areas involved in representing visual
objects40,41, places38,39, and also emotional content in the
amygdala4,39. Content-specific modulations are triggered espe-
cially when these types of content intrude into awareness in
response to a cue and need to be purged39, indicating that inhi-
bition can be dynamically targeted to diverse cortical sites to meet
control demands. The current findings broaden the scope of this
mechanism further by showing that it is not limited to stopping
retrieval processes, but also extends to stopping the preparation
and execution of motor responses, consistent with a broad
mechanism involved in self-control over action and thought.

The proposed role of the rDLPFC and rVLPFC as hubs of
domain-general inhibitory control during stopping does not
imply that these regions are exclusively dedicated to stopping.
Indeed, it seems likely that these regions contribute to many
cognitive functions. Rather, the current evidence suggests that
when stopping an action or thought is required, these regions are
recruited to cancel processing in target areas involved in repre-
senting to-be-suppressed content, thereby achieving the desired
stopping outcome. Methodologically diverse evidence indicates
that this contribution is causally necessary to successful inhibitory
control and is not a mere epiphenomenon of doing difficult tasks.
First, the current effective connectivity analyses indicate a robust
top-down modulation of target regions by these putative pre-
frontal sources. This finding comports well with lesion and brain
stimulation work in both humans and animals, indicating that
disrupting the function of rDLPFC and rVLPFC severely disrupts
the capacity to stop, consistent with causal necessity27–30. Second,
although action and thought stopping are both difficult tasks, the
network dynamically reconfigured its connectivity to target
regions to suppress their function in a manner compatible with
task goals. These features have the hallmarks of a control process
configured to implement a particular regulatory function, rather
than a generic response to task difficulty. RDLPFC and rVLPFC
are likely to work in concert with a broader network to achieve
these goals, as our conjunction analyses suggest. The current
work does not address the functional role of domain-general
regions outside of the prefrontal cortex, the contributions of
which should be examined in future work.

We considered the possibility that only one of these two frontal
regions is central to implementing top-down inhibitory control
during stopping, with the other providing upstream inputs
essential to initiate successful control. Our effective connectivity
analysis probed alternative hypotheses about the way rDLPFC
and rVLPFC interact during stopping. RDLPFC might implement

the true inhibitory signal, receiving salience detection input from
rVLPFC that up-regulates rDLPFC function, consistent with a
possible role of the VLPFC in the ventral attention network83,84.
Alternatively, rVLPFC may implement inhibition, with rDLPFC
preserving task set by sending driving inputs to the rVLPFC. Our
findings indicate that both structures contributed in parallel to
top-down inhibitory control and interacted bidirectionally during
both action and thought stopping. Little evidence suggested a
strong asymmetry in how rDLPFC and rVLPFC interacted, as
should arise if one region simply served a role in salience
detection or task-set maintenance. It remains possible, however,
that rDLPFC and rVLPFC serve distinct functions that are not
readily separable given the current manipulations and the level of
temporal resolution available in fMRI data. Nevertheless, these
findings suggest that rDLPFC and rVLPFC, at a minimum, act
together to implement top-down inhibitory control during
stopping. Although it might seem surprising that two spatially
segregated prefrontal regions would act in concert to achieve this
function, it seems less unusual considering their potential role in
the cingulo-opercular network (CON). Most of the regions
identified in our inhibition conjunction analysis participate in this
network, suggesting that it may play an important role in
achieving stopping. Given the strong integrated activity of this
network, elements of which are distributed throughout the
brain51,54, this suggests future work should examine how rDLPFC
and rVLPFC work together with other elements of this network
to achieve successful stopping.

The current proposal contrasts with models that emphasise the
primacy of either rVLPFC or rDLPFC in inhibitory control, and
which have not addressed dynamic targeting to diverse content.
Research on motor inhibition has emphasised the rVLPFC as the
source of top-down inhibitory control10,11, although without
evidence to exclude the role of rDLPFC. Indeed, studies cited as
favouring the selective role of rVLPFC often support contribu-
tions of the anterior rDLPFC structure identified here. For
example, whereas intracranial stimulation in primates establishes
the causal necessity of the rVLPFC in motor stopping, so too does
stimulation of the dorsal bank of the principal sulcus, the putative
monkey homologue of the rDLPFC in humans30; and whereas
intracranial recordings in humans show stopping-related activity
in rVLPFC, they also reveal it in anterior rDLPFC and often prior
to rVLPFC86. Research on thought suppression has emphasised
the rDLPFC as the source of top-down inhibitory control1,2,9; but
most studies supporting the role of rDLPFC in thought sup-
pression also reveal activations in the rVLPFC22. Indeed, as our
within-subjects and meta-analytic conjunctions unambiguously
confirm, both regions are recruited during both stopping tasks.
The current study goes further than establishing conjoint acti-
vation: Pattern classification and connectivity analyses show the
involvement of both regions in the dynamics of control, without
selectivity. These findings validate the importance of both regions,
establish the domain-generality of their influence, and demon-
strate the dynamic inhibitory targeting capacity necessary to infer
a flexible control mechanism.

Although rDLPFC and rVLPFC exhibit core properties needed
to achieve domain-general stopping, there is also evidence of
domain-specificity within these regions. A classifier trained to
distinguish stopping actions from stopping thoughts performed
well. Although seemingly inconsistent with domain generality,
such effects can be understood as consequences of the dynamic
targeting functionality afforded by these regions. For a region to
serve as a flexible hub of inhibitory control, it must be able to
receive inputs from diverse cortical sites, representing informa-
tion needed to drive the stopping (e.g., the perception of the
coloured word for the No-Think task, and of the tone for the
stop-signal task). Moreover, to flexibly target inhibitory control,
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source regions must interact with diverse cortical and subcortical
targets (e.g., hippocampus vs. M1), the processing which must be
stopped. These input and output processes may manifest in
unique multivariate patterns over common voxels within each
region. We cannot rule out, however, the possibility that domain-
specific inhibition processes are also manifested by unique pat-
terns in these regions. Future work should examine the additional
contributions of input, output, and domain-specific stopping
features to the activations found in rDLPFC and rVLPFC.

The present findings highlight a potentially important differ-
ence between the brain networks involved in stopping and other
forms of cognitive control that do not require the full cessation of
a motor or cognitive process. Maintaining rules in working
memory, implementing task sets, performing multi-tasking, and
manipulating information actively are all clear cases of cognitive
control that can require interference resolution, but do not
necessarily entail active stopping. The above functions engage the
widely discussed frontoparietal network (FPN), often assigned a
central role in implementing cognitive control more broadly50–53.
One might assume that because stopping is a form of cognitive
control that the FPN would be central to it as well. Nevertheless,
the FPN, though involved in our tasks, appeared less prominent
than the CON, which accounted for most of the distinct cortical
parcels participating in our domain-general stopping regions. We
found little evidence for the involvement of major areas of the
FPN, including much of the middle frontal gyrus bilaterally in our
multimodal inhibition regions. As our meta-analysis and within-
subjects comparisons confirm, inhibitory control during stopping
is strongly right lateralised, which also is not a feature emphasised
in research on the FPN. Our findings raise the possibility that
stopping actions and thoughts may rely on a distinct network,
with different functional characteristics to the FPN. Whether
other functions thought to require inhibitory control (e.g.,
selection between competing responses, as in Stroop or Flanker
interference) also preferentially engage the stopping networks
identified here is not addressed in the current work, although
some empirical precedents suggest that stopping and selection
may engage partially distinct mechanisms26,37,87.

Dynamic inhibitory targeting provides a neurocognitive fra-
mework that can account for both associations and dissociations
in the abilities to suppress unwanted thoughts and actions. On the
one hand, deficits in both action and thought stopping should
arise with dysfunction in the rDLPFC or rVLPFC, given the
common reliance of these abilities on those regions. Such asso-
ciations occur frequently. In the general population, people
scoring highly on self-report measures of impulsivity or com-
pulsivity also report greater difficulty with intrusive thoughts88,89.
Clinically, persistent intrusive thoughts and action stopping def-
icits co-occur in numerous disorders: Obsessive thoughts and
compulsive actions in obsessive-compulsive disorder90,91; intru-
sive memories and impaired response inhibition in PTSD92–96;
persistent worry and impulsivity in anxiety disorders97 and
intrusive thoughts and compulsivity in addiction98–100. These co-
morbid deficits may reflect dysfunction in the rDLPFC, the
rVLPFC or in other shared components of their control path-
ways. On the other hand, dissociations should arise when dys-
function selectively disrupts a domain-specific pathway linking
rLPFC to target sites involved in generating actions and thoughts,
including dysfunction to local inhibition at the target site itself.
For example, individual variation in local GABAergic inhibition
within the hippocampus or M1 predict inhibitory control over
memories and actions, respectively, independently of prefrontal
function8,49. Thus, selective difficulties in action stopping or
thought inhibition may arise, given focal deficits in either motor
cortical or hippocampal GABA8. The separate contributions of
domain-general and domain-specific factors to inhibitory control

implied by dynamic targeting constrains the utility of motor
inhibition as a metric of inhibitory control over thought and may
explain the surprisingly small SSRT deficits in major depression
and anxiety, relative to attention deficit hyperactivity disorder or
obsessive-compulsive disorder19.

The current study did not seek to characterise the polysynaptic
pathways through which the rDLPFC and rVLPFC suppress
activity in either M1 or the hippocampus5,9. Rather, we focused
on the existence of a central, domain-general inhibitory control
function capable of flexibly shifting its top-down influence to stop
actions and thoughts. By juxtaposing two well characterised
model systems for stopping actions and thoughts, each with
distinct neural targets of inhibition, we were able to show that the
same set of prefrontal regions is involved in stopping processing
in different cortical target areas, in a rapid, flexible manner. In
doing so, we established evidence for dynamic inhibitory target-
ing as a key mechanism of domain-general inhibitory control
during stopping in the human brain. More broadly, this work
suggests that the human capacity for self-control in the face of
life’s challenges may emerge from a common wellspring of con-
trol over our actions and thoughts.

Methods
We used a dataset from a published study8. However, here the data were inde-
pendently re-analysed with a different focus.

Participants. Thirty right-handed native English speakers participated. Partici-
pants gave written informed consent and received money for participating. Five
participants did not reach the 40% learning criterion on the Think/No-Think task,
and one fell asleep during fMRI acquisition. The final sample comprised 24 par-
ticipants (7 males, 17 females), 19–36 years old (M= 24.67 years, SD= 4.31).
Participants had normal or corrected-to-normal vision and no reported history of
neurological, medical, or memory disorders, and they were asked not to consume
psychostimulants, drugs, or alcohol before the experiment. The Cambridge Psy-
chology Research Ethics Committee approved the project.

Experimental paradigm. Participants performed adapted versions of the Stop-
signal20 and Think/No-Think62 tasks. Both tasks require participants to stop
unwanted processes, but in the motor and memory domains, respectively.

The Stop-signal task assesses the ability to stop unwanted actions. Participants
first learn stimulus–response associations and then perform speeded motor
responses to the presented (Go) stimuli. Occasionally, shortly after the Go
stimulus, a stop signal occurs, and participants must withhold their response. We
measured the stop-signal reaction time (SSRT), an estimate of how long it takes the
participant to stop.

The Think/No-Think task assesses the ability to stop unwanted memory
retrievals. Participants first form associations between unrelated cue-target word
pairs. Then participants receive two-thirds of the cues as reminders (one at a time)
and are asked to either think (Think items) or to not-think (No-Think items) of the
associated target memory, with each Think and No-Think reminder repeated
numerous times throughout the task. Finally, participants attempt to recall all
initially learned associations. Typically, recall performance suffers for No-Think
items compared to Baseline items that were neither retrieved nor suppressed
during the think/no-think phase. This phenomenon, known as suppression-
induced forgetting (SIF), indirectly measures the ability to stop unwanted memory
retrievals by quantifying inhibitory aftereffects of this process2,101.

Stimuli and apparatus. We presented stimuli and recorded responses with Pre-
sentation software (Neurobehavioral Systems, Albany, CA, USA). For the Stop-
signal task, four visually discriminable red, green, blue, and yellow coloured circles
of 2.5 cm in diameter, presented on a grey background, constituted the Go stimuli
(Fig. 2a). Participants responded by pressing one of the two buttons (left or right)
with a dominant (right) hand on a button box. An auditory 1000 Hz “beep” tone
presented at a comfortable volume for 100 ms signalled participants to stop their
responses. A fixation cross appeared in 50-point black Arial Rounded font on a
grey background prior to the onset of the Go stimulus.

For the Think/No-Think task, we constructed 78 weakly relatable English word
pairs (cue-target words, e.g., Part-Bowl) as stimuli and an additional 68 semantically
related cue words for 68 of the target words (e.g., a cue word ‘Cornflake’ for the
target word ‘Bowl’). We used 60 of the target words and their related and weak cues
in the critical task, with the other items used as fillers. We divided the critical items
into three lists composed of 20 targets and their corresponding weak cue words
(the related word cues were set aside to be used as independent test cues on the
final test; see procedure). We counterbalanced these lists across the within-subjects
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experimental conditions (Think, No-Think, and Baseline) so that across all
participants, every pair participated equally often in each condition. We used the
filler words both as practice items and also to minimise primacy and recency effects
in the study list102. Words appeared in a 32-point Arial font in capital letters on a
grey background (Fig. 2b). During the initial encoding and final recall phases, we
presented all cues and targets in black. For the Think/No-Think phase, we presented
the Think cues in green and the No-Think cues in red, each preceded by a fixation
cross in 50-point black Arial Rounded font on a grey background.

Procedure. The procedure consisted of seven steps: (1) stimulus-response learning
for the Stop-signal task: (2) Stop-signal task practice; (3) encoding phase of the
Think/No-Think task; (4) Think/No-Think practice; (5) practice of interleaved
Stop-signal and Think/No-Think tasks; (6) experimental phase during fMRI
acquisition; (7) recall phase of the Think/No-Think task. We elaborate these steps
below (see also Fig. 2c).

Step 1—Stop-signal task stimulus-response learning. Participants first formed
stimulus-response associations for the Stop-signal task. As Go stimuli, we pre-
sented circles in four different colours (red, green, blue, and yellow) and partici-
pants had to respond by pressing one of the two buttons depending on the circle’s
colour. Thus, each response button had two colours randomly assigned to it and
participants associated each colour to its particular response.

Participants learned the colour-button mappings in two sets of two colours,
with the first colour in a set associated with one button, and the second with the
other button. After practising the responses to these colours in random order 10
times each, the same training was done on the second set. Subsequently,
participants practised the colour-button mappings of all four colours in random
order until they responded correctly to each colour on 10 consecutive trials. During
the practice, we instructed participants to respond as quickly and accurately as
possible and provided feedback for incorrect or slow (>1000 ms) responses.

Step 2—Stop-signal task practice. Once participants learned the stimulus–response
associations, we introduced the Stop-signal task. We instructed participants to keep
responding to each coloured circle as quickly and accurately as possible but
indicated that on some trials, after the circle appeared, a beep would sound and
that they should not press any button on these trials. We also told participants to
avoid slowing down and waiting for the beep, requesting instead that they treat
failures to stop as normal and always keep responding quickly and accurately.
Thus, on Go trials, participants responded as quickly as possible, whereas, on Stop
trials, a tone succeeded the cue onset, signalling participants to suppress their
response. To facilitate performance, participants received on-screen feedback for
incorrect and too slow (>700 ms) responses to Go trials, and for pressing a button
on Stop trials.

Figure 2a presents the trial timings. Go trials started with a fixation cross,
presented for 250 ms, followed by a coloured circle until response or for up to
2500 ms. After the response and a jittered inter-trial interval (M= 750 ms,
SD= 158.7 ms), a new trial commenced. Stop trials proceeded identically except
that a tone sounded shortly after the circle appeared. This stop signal delay varied
dynamically in 50 ms steps (starting with 250 or 300 ms) according to a staircase
tracking algorithm to achieve approximately a 50% success-to-stop rate for each
participant. Note that the longer the stop signal delay is, the harder it is to not press
the button. The dynamic tracking algorithm reduces participants’ ability to
anticipate stop signal delay timing and provides a method for calculating the SSRT.
In this practice step, participants performed 96 trials, of which 68 (71%) were Go
trials and 28 (29%) were Stop trials.

Step 3—Think/No-Think task encoding phase. Once participants had learned the
Stop-signal task, we introduced the Think/No-Think task. In the encoding phase,
participants formed associations between 60 critical weakly related word pairs (e.g.,
Part-Bowl) and between 18 filler pairs. First, participants studied each cue-target
word pair for 3.4 s with an inter-stimulus interval of 600 ms. Next, from each
studied pair, participants saw the cue word only and recalled aloud the corre-
sponding target. We presented each cue for up to 6 s or until a response was given.
600 ms after cue offset, regardless of whether the participant recalled the item, the
correct target appeared for 1 s. We repeated this procedure until participants
recalled at least 40% of the critical pairs (all but 5 participants succeeded within the
maximum of three repetitions). Finally, to assess which word-pairs participants
learned, each cue word appeared again for 3.3 s with an inter-stimulus interval of
1.1 s and participants recalled aloud the corresponding target. We provided no
feedback on this test.

Step 4—Think/No-Think practice. After participants encoded the word pairs, the
Think/No-Think practice phase commenced. On each trial, a cue word appeared
on the screen in either green or red. We instructed participants to recall and think
of the target words for cues presented in green (Think condition) but to suppress
the recall and avoid thinking of the target words for those cues presented in red
(No-Think condition). Participants performed the direct suppression variant of the
Think/No-Think task37,103 in which, after reading and comprehending the cue,
they suppressed all thoughts of the associated memory without engaging in any

distracting activity or thoughts. We asked participants to “push the memory out of
mind” whenever it intruded.

Trial timings appear in Fig. 2b. A trial consisted of presenting a cue in the
centre of the screen for 3 s, followed by an inter-stimulus interval (≥0.5 s,M= 2.3 s,
SD= 1.7 s) during which we displayed a fixation cross. We jittered the inter-
stimulus interval (≥0.5 s,M= 2.3 s, SD= 1.7 s) to optimise the event-related design
(as determined by optseq2: http://surfer.nmr.mgh.harvard.edu/optseq).

In this practice phase, we used 12 filler items, six of which were allocated to the
Think condition and six to the No-Think condition. We presented each item three
times in random order (36 trials in total). In the middle of the practice, we
administered a diagnostic questionnaire to ensure participants had understood and
followed the instructions.

Step 5—Interleaved Stop-signal and Think/No-Think practice. Before moving into
the MRI scanner, participants performed an extended practice phase interleaving
the Stop-signal and Think/No-Think tasks. For the Think/No-Think task, we again
used 12 filler items. Other than that, and the fact that the practice took place
outside the MRI scanner, this phase was identical to a single fMRI acquisition
session described into more detail next.

Step 6—Experimental phase and fMRI acquisition. In the main experimental phase,
participants underwent 8 fMRI scanning runs in a single session. Before the
scanning began, participants saw the correct button-colour mappings and all 78-
word pairs briefly presented on the screen to remind them of the task and items.
After the brief refresher, the fMRI acquisition started. During each fMRI run,
participants performed 8 blocks of the Think/No-Think task interleaved with 8
blocks of the Stop-signal task. All blocks lasted 30 s. To minimise carry-over effects,
we interspersed 4 s rest periods (blank screen with a grey background) between
blocks. Each block began with items that we did not score (the filler items) to
reduce task-set switching effects between blocks. Within each block, we pseudo-
randomly ordered all trials, and the trial timings for both tasks were identical to
those used in their respective practice phases (steps 2 and 4; Fig. 2a and b).

Four of the Stop-signal task blocks contained Go trials only. We did not use
these blocks in this report. Each of the other four Stop-signal blocks contained 12
trials, yielding 384 trials in total (8 runs * 4 blocks per run * 12 trials per block). On
average, across participants, Stop trials constituted 32% (SD= 2%) of the trials. As
in the practice phase, a staircase tracking algorithm varied the delay between cue
onset and stop-signal tone according to each participant’s performance, keeping
the stopping success at ~50%.

Each of the Think/No-Think blocks contained 6 trials, starting with a filler item
as a Think trial followed by 5 Think or No-Think items in a pseudo-random order.
Within each fMRI run, participants saw all 20 critical Think and 20 critical No-
Think items once. Thus, across the 8 runs, participants recalled or suppressed each
memory item 8 times. The proportion of the Think trials (58%) exceeded the
proportion of the No-Think trials (42%) to better resemble the higher frequency of
Go trials than Stop trials during the Stop-signal task. We accomplished this by
assigning Think trials to the filler items, without changing the frequency of Think
trials on critical experimental items. After the fourth (middle) run, to allow
participants to rest, we acquired their anatomical scan and administered the
diagnostic questionnaire to ensure that participants closely followed the
instructions of the Think/No-Think task.

Step 7—Think/No-Think recall phase. In the final step (inside the scanner but
without any scan acquisition), we measured the aftereffects of memory retrieval
and suppression via a cued-recall task on all word pairs (encoded in step 3). This
included 20 Baseline items that were neither retrieved nor suppressed during the
Think/No-Think phase and that this provided a baseline estimate of the memor-
ability of the pairs.

To reinstate the context of the initial encoding phase, we first tested participants
on 10 filler cue words, 6 of which they had not seen since the encoding phase (step
3) and 4 of which they saw during the interleaved Stop-signal and Think/No-Think
practice phase (step 5). We warned participants that the cues in this phase could be
ones they had not seen for a long time and encouraged them to think back to the
encoding phases to retrieve targets.

Following context reinstatement, participants performed the same-probe and
independent-probe memory tests. In the same-probe test, we probed memory with the
original cues (e.g., the weakly related cue word ‘Part’ for the target word ‘Bowl’). We
included the independent-probe test to test whether forgetting generalised to novel
cues62, using the related cues we had designed for each target. For example, we cued
with the semantic associate of the memory and its first letter (e.g., ‘Cornflake—B’ for the
target ‘Bowl’). Across participants, we counterbalanced the order in which the tests
appeared. In both tests, cues appeared for a maximum of 3.3 s or until participants gave
a response, with an inter-stimulus interval of 1.1 s. We coded response as correct if
participants correctly recalled the target while the cue was onscreen.

Finally, we debriefed participants and administered a post-experimental
questionnaire to capture participants’ experiences and the strategies they used in
the Think/No-Think and Stop-signal tasks.

Brain image acquisition. We collected MRI data using a 3-T Siemens Tim Trio
MRI scanner (Siemens, Erlangen, Germany) fitted with a 32-channel head coil.
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Participants underwent eight functional runs of the blood-oxygenation-level-
dependent (BOLD) signal acquisitions. We acquired functional brain volumes
using a gradient-echo, T2*-weighted echoplanar pulse sequence (TR= 2000 ms,
TE= 30 ms, flip angle= 90°, 32 axial slices, descending slice acquisition, voxel
resolution= 3 mm3, 0.75 mm interslice gap). We discarded the first four volumes
of each session to allow for magnetic field stabilisation. Due to technical problems
encountered during task performance, we discarded from the analysis one func-
tional run from two participants each, and two functional runs from another
participant. After the fourth functional run, we acquired an anatomical reference
for each participant, a high-resolution whole-brain 3D T1-weighted magnetisation-
prepared rapid gradient echo (MP-RAGE) image (TR= 2250 ms, TE= 2.99 ms,
flip angle= 9°, field of view= 256 × 240 × 192 mm, voxel resolution= 1 mm3).
Following the acquisition of the anatomical scan, participants underwent the
remaining four functional runs.

Behavioural performance analysis. For statistical analyses of the behavioural
data, we used R (v4, 2020-04-24) in Jupyter Notebook (Anaconda, Inc., Austin,
TX). The data and detailed analysis notebook are freely available at GitHub
repository104 (https://github.com/dcdace/Domain-general/). For all statistical
comparisons, we adopted p < 0.05 as the significance threshold.

For correlation analyses, we followed recommendations by Pernet et al.105 and
used one of three correlation methods depending on whether the data were
normally distributed or contained outliers. If there were no outliers and data were
normally distributed, we performed Pearson correlation and reported it as ‘r’. If
there were univariate outliers (but no bivariate) or data were not normally
distributed, we performed robust 20% Bend correlation and reported it as ‘rpp’. If
there were bivariate outliers, we performed robust Spearman skipped correlation
using the minimum covariance determinant (MCD) estimator and reported it as
‘rss’. For univariate and bivariate outlier detection, we used boxplot and bagplot
methods, respectively.

For the analysis of Stop-signal task data, we followed the guidelines by
Verbruggen et al.64 and calculated SSRT using the integration method with the
replacement of Go omissions. Specifically, we included all Stop trials and all Go
trials (correct and incorrect), replacing missed Go responses with the maximum Go
RT. To identify the nth fastest Go RT, we multiplied the number of total Go trials
by the probability of responding to stop signal (unsuccessful stopping). The
difference between the nth fastest Go RT and the mean SSD provided our estimate
of SSRT.

In addition to SSRT, we calculated the probability of Go omissions, probability
of choice errors on Go trials, probability of responding to Stop trials, mean SSD of
all Stop trials, mean correct Go RT, and mean failed Stop RT. We also compared
RTs of all Go trials against RTs of failed Stop trials to test the assumption of an
independent race between a go and a stop runner. Besides, we assessed the change
of Go RTs across the eight experimental blocks. Prior work suggests that the
experiment-wide integration method can result in underestimation bias of SSRT if
participants slow their RT gradually across experimental runs. In that case, a
blocked integration method would provide a better measure of SSRT106. In our
data, however, on average within the group, we observed a negligible decrease in
RT across runs (B=−2.555, p= 0.250), suggesting that the experiment-wide
integration method was more appropriate.

For the Think/No-Think task data, we focused on the critical measure: SIF. We
used the final recall scores (from step 7) of No-Think and Baseline items
conditionalized on correct initial training performance (at step 3), as in prior
work1. Thus, in the final recall scores, we did not include items that were not
correctly recalled (M= 29%, SD= 17) during the criterion test of the encoding
phase, as the unlearned items can be neither suppressed nor retrieved during the
Think/No-Think phase (step 6). As in our previous work8, we averaged the scores
across the same-probe and independent-probe tests and the difference between the
Baseline and No-think item recall scores constituted our measure of SIF. To assess
the group effect of SIF, we tested the data for normality (W= 0.95, p= 0.264) and
performed a one-sample, one-sided t-test to determine if SIF is greater than zero.
Finally, to assess whether inhibition ability generalises across motor and memory
domains, we performed a correlation between the SSRT and SIF scores.

To identify univariate and bi-variate outliers in the SSRT and SIF scores, we
used box plot method, which relies on the interquartile range. Univariate outliers
were not present for any of the two measures. One bi-variate outlier was removed
from the correlation analysis and the behavioural partial least squares analysis
(described below). Nevertheless, outlier removal did not qualitatively alter the
results.

Brain imaging data analysis
Pre-processing. We pre-processed and analysed the brain imaging data using Sta-
tistical Parametric Mapping v12 release 7487 (SPM12; Wellcome Trust Centre for
Neuroimaging, London) in MATLAB vR2012a (The MathWorks, MA, USA). To
approximate the orientation of the standard Montreal Neurological Institute (MNI)
coordinate space, we reoriented all acquired MRI images to the anterior-posterior
commissure line and set the origins to the anterior commissure. Next, we applied
our pre-processing procedure to correct for head movement between the scans
(images realigned to the mean functional image) and to adjust for temporal dif-
ferences between slice acquisitions (slice-time correction relative to the middle axial

slice). The procedure then co-registered each participant’s anatomical image to the
mean functional image and segmented it into grey matter, white matter, and
cerebrospinal fluid. We then submitted the segmented images for each participant
to the DARTEL procedure107 to create a group-specific anatomical template that
optimises inter-participant alignment. The DARTEL procedure alternates between
computing a group template and warping an individual’s tissue probability maps
into alignment with this template and ultimately creates an individual flow field of
each participant. Subsequently, the procedure transformed the group template into
MNI-152 space. Finally, we applied the MNI transformation and smoothing with
an 8 mm full-width-at-half-maximum (FWHM) Gaussian kernel to the functional
images for the whole-brain voxel-wise analysis.

Univariate whole-brain analysis. To identify brain areas engaged in both inhibiting
actions and inhibiting memories, we performed a whole-brain voxel-wise uni-
variate analysis. We high-pass filtered the time series of each voxel in the nor-
malised and smoothed images with a cut-off frequency of 1/128 Hz, to remove low-
frequency trends, and modelled for temporal autocorrelation across scans with the
first-order autoregressive (AR(1)) process. We then submitted the pre-processed
data of each participant to the first-level, subject-specific, general linear model
(GLM) modelling a single design matrix for all functional runs.

We modelled the Stop-signal task and Think/No-Think task conditions as
boxcar functions, convolved with a haemodynamic response function (HRF). In
the model, we used group average response latencies for each trial type as the trial
durations for the Stop-signal task condition, but we used 3 s epochs for the Think/
No-Think task condition. As in the behavioural analysis, we conditionalized the
Think and No-Think conditions on initial encoding performance. The main
conditions of interest for our analysis included: correct Stop, correct Go (from the
mixed Stop-signal and Go trial blocks only), conditionalized No-Think and
conditionalized Think. Unlearned No-Think and Think items, filler items,
incorrect Stop, incorrect Go and Go trials from the Go-only blocks we modelled as
separate regressors of no interest. We also included the six realignment parameters
for each run as additional regressors of no interest, to account for head motion
artefacts, and a constant regressor for each run. We obtained the first-level contrast
estimates for Stop, Go, No-Think, and Think conditions, and the main effect of
Inhibit [Stop, No-Think] > Respond [Go, Think].

At the second-level random-effect group analysis we entered the first-level
contrast estimates of Stop, Go, No-Think, and Think conditions into a repeated-
measures analysis of variance (ANOVA), which used pooled error and correction
for non-sphericity, with participants as between-subject factor. We then performed
a conjunction analysis of Stop > Go and No-Think > Think contrasts, using the
minimum statistics analysis method implemented in SPM12, and testing the
conjunction null hypothesis108,109. The results of the conjunction analysis
represent voxels that were significant for each individual contrast thresholded at
p < 0.05 false discovery rate (FDR) corrected for whole-brain multiple comparisons.

Behavioural partial least squares (PLS) analysis. We hypothesised that domain-
general inhibitory control brain activity would be related to domain-general
inhibitory behaviour. To test our hypothesis, we performed behavioural PLS
analysis110,111 following a previously employed strategy39. We restricted our ana-
lysis to an independent domain-general inhibitory control mask derived from a
meta-analytic conjunction analysis of 40 Stop-signal and 16 Think/No-Think fMRI
studies (described below). Within this mask, we identified voxels where the BOLD
signal from the main effect of Inhibit > Respond contrast depicted the largest joint
covariance with the SSRT and SIF scores.

Specifically, Inhibit > Respond contrast values from each voxel of an MNI-
normalised brain volume were aligned and stacked across participants into a brain
activation matrix X, and SSRT and SIF scores were entered into a matrix Y. In both
matrices, rows represented participants. We then individually mean-centred the X and
Y matrices and normalised each row in the matrix X (representing each participant’s
voxel activations) so that the row sum of squares equalled to one. Setting an equal
variance of voxel activities across subjects ensured that the observed differences between
participants were not due to overall differences in activation. Hereafter, a correlation of
X and Y matrices produced a matrix R encoding the relationship between each voxel
activity and behavioural scores across participants. We then applied a singular-value
decomposition to the correlation matrix R to identify LVs that maximise the covariance
between voxel activation (X) and behavioural measurements (Y). Each LV contains a
singular value, singular image, and correlation profile. The singular value represents the
amount of the covariance explained by the LV. The singular image identifies a collection
of voxels that, as a group, are most related to the effects expressed in the LV. The
numerical weights within the singular image are called brain saliences and represent the
strength of the relationship between the BOLD signal and the behavioural scores. A
correlation profile represents how the behaviour correlates with the pattern of brain
activity identified in the singular saliences image. A dot product of subject’s raw image
volume and the singular saliences image produces a brain score for each subject. Brain
scores indicate how strongly individual subjects express the pattern on the LV.

To assess the statistical significance of each LV and the robustness of voxel
saliences, we used 5000 permutation tests and 5000 bootstrapped resamples,
respectively. By dividing each voxel’s initial salience by the standard error of its
bootstrapped distribution, we obtained a bootstrapped standard ratio, equivalent to
a z-score, to assess the significance of a given voxel. We thresholded the acquired
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scores at 1.96, corresponding to p < 0.05, two-tailed. The multivariate PLS analysis
method does not require correction for multiple comparisons as it quantifies the
relationship between the BOLD signal and behavioural scores in a single analytic
step110.

Dynamic causal modelling (DCM) analysis. We conducted a DCM analysis66 to
determine the most likely inhibition-related interactions between domain-general
inhibitory control areas in the right prefrontal cortex and domain-specific target
areas. For the domain-specific target areas, we selected the left primary motor
cortex (M1) and right hippocampus, based on our previous findings showing that
stopping actions and stopping memories preferentially downregulates M1 and
hippocampus, respectively8.

DCM enables one to investigate hypothesised interactions among pre-defined
brain regions by estimating the effective connectivity according to (1) the activity of
other regions via intrinsic connections; (2) modulatory influences on connections
arising through experimental manipulations; and (3) experimentally defined
driving inputs to one or more of the regions66. The intrinsic, modulatory, and
driving inputs one specifies constitute the model structure assumed to represent the
hypothesised neuronal network underlying the cognitive function of interest.

With DCM, a set of models can be defined that embody alternate hypotheses
about the average connectivity and conditional moderation of connectivity. These
models are inverted to the data and then compared in terms of the relative model
evidence using Bayesian model selection (BMS). The differential model evidence
from BMS indicates the probability that a given model is more likely to have
generated the data than the other models and allows to infer both the presence and
direction of modulatory connections. This can be estimated for individual models,
or families of models that share critical features.

For the DCM analysis, we defined four regions of interest (ROIs): the right
dorsolateral prefrontal cortex (rDLPFC), the right ventrolateral prefrontal cortex
(rVLPFC), the right hippocampus, and the left M1. We obtained the rDLPFC and
rVLPFC ROIs, centred at MNI coordinates 35, 45, 24 and 44, 21, −1, respectively,
from an independent meta-analytic conjunction analysis (described below). We
defined the M1 ROI (centred at MNI coordinates −33, −22, 46) from a group
analysis (N= 30) of an independent M1 localiser study on different participants
(Button Press > View contrast). We mapped the rDLPFC, rVLPFC, and M1 ROIs
from the MNI space to participants’ native space. We manually traced the
hippocampal ROIs in native space for each participant, using ITK-SNAP v3.8.0
(www.itksnap.org112) and following established anatomical guidelines113,114.
Within each subject-specific ROI, we identified all significant voxels (thresholded at
p < 0.05, uncorrected for multiple comparisons) for that participant based on the
main effect of interest, which included Stop, Go, No-Think, and Think conditions.
This selection was performed on the first-level GLMs with concatenated functional
runs, described in the next paragraph. Only the identified significant voxels were
included in the final ROIs for the DCM analysis.

We performed the DCM analysis on participants’ native-space, unsmoothed
brain images, to maximise the anatomical specificity of the hand-traced
hippocampal ROI. We estimated a first-level GLM for each participant in their
native space. The GLM model was closely similar to the first-level model defined
for the univariate whole-brain analysis (see above). But in this new model, we
concatenated all functional runs into a single run to form a single time series per
participant. Because we concatenated the runs, we did not model conditions that
started <24 s before the end of each run (apart from the very last run), and we did
not use the SPM high-pass filtering and temporal autocorrelation options, but as
additional regressors of no interest we included sines and cosines of up to three
cycles per run to capture low-frequency drifts, and regressors modelling each run.

From each of the four ROIs, we extracted the first eigenvariate of the BOLD
signal time-course, adjusted for effects of interest. Based on these data, we
estimated and compared a null model with no modulatory connections and 72
models with modulatory connections (73 models in total) to test alternative
hypotheses about how suppressing actions and memories modulate connectivity
between the four ROIs (see Fig. 7a). All 72 models with modulatory connections
were variants of the same basic model with intrinsic bidirectional connections
between all regions except no intrinsic connections between M1 and hippocampus,
and with driving inputs from the Stop-signal (Stop and Go trials) and Think/No-
Think (No-Think and Think trials) tasks into both rDLPFC and rVLPFC regions.
Across models, we varied the modulatory influences on the intrinsic connections
arising through Stop or No-Think trials.

We grouped the 72 models into three families differing according to whether
the source–target modulation was bidirectional, top-down, or bottom-up. Within
each family, we defined four subfamilies that differed according to how Stop and
No-Think trials modulate the prefrontal control and inhibitory target pathways:
independent modulation of target regions by rDLPFC and rVLPFC (testing the
idea that two parallel inhibition pathways might exist); rDLPFC only modulation
(testing the idea that only rDLPFC supports inhibition); rVLPFC only modulation
(testing the idea that only rVLPFC supports inhibition); or modulation of both
rDLPFC and rVLPFC (testing the idea that both contribute to inhibition). Within
the four subfamilies, we defined further four subfamilies according to how Stop and
No-Think trials modulate interactions between the rDLPFC and rVLPFC regions:
no interactions; rVLPFC modulates rDLPFC; rDLPFC modulates rVLPFC; or
bidirectional interaction between rDLPFC and rVLPFC.

Furthermore, within each subfamily, we defined two additional subfamilies
according to whether Stop and No-Think trials modulate the prefrontal
connectivity with the preferred targets (M1 when stopping actions and
hippocampus when stopping memories) or with the non-preferred targets
(hippocampus when stopping actions and M1 when stopping memories), testing
the idea that inhibitory modulation must affect a task appropriate structure to
model the data well.

We compared the model evidence for the 73 models (the null model and 72
models with modulatory connections) and the groups and subgroups of families
across the 24 subjects using random-effects BMS115,116. BMS reports the
exceedance probability, which is a probability that a given model, or family of
models, is more likely than any other model or family tested, given the group data.

Multi-voxel pattern analysis. We performed multi-voxel pattern analysis (MVPA)
to test whether action and memory inhibition share a common voxel activation
pattern within an ROI. We used linear discriminant analysis (LDA) and within-
subject classification to classify voxel activity patterns within the same four ROIs
that we used for the DCM analysis (rDLPFC, rVLPFC, right hippocampus, and left
M1). Same as for the DCM analysis, within each subject-specific ROI, we identified
all significant voxels (thresholded at p < 0.05, uncorrected for multiple compar-
isons) for that participant based on the main effect of interest, which included Stop,
Go, No-Think, and Think conditions. This selection was performed on the first-
level GLMs described in the next paragraph. Only the identified significant voxels
were included in the final ROIs for the MVPA analysis. Note that the selected
voxels within the basis ROIs might not be exactly the same as used in the DCM
analysis as for the DCM analysis we used the first-level model with concatenated
functional runs. Nevertheless, the selection was based on the same principles and
using the same basis ROIs and does not affect the interpretation of the used
regions.

We performed a run-wise classification. For designs like ours (non-blocked
event-related, within-subject classification), compared to trial-wise classification,
run-wise classification is proven to be a better approach. It provides a clearer class
identity and temporal independence and improves the signal-to-noise117–121. For
each participant on their native-space unsmoothed brain images, we estimated a
first-level GLM which was identical to the first-level model defined for the
univariate whole-brain analysis (see above). The estimated beta weights of the
voxels in each ROI were extracted and pre-whitened to construct noise normalised
activity patterns for each event of interest (No-Think, Think, Stop, Go) within each
of the eight functional fMRI runs.

To increase the reliability of pattern classification accuracy, we used a random
subset approach122. Specifically, for each ROI separately, we created up to 2000
unique subsets of randomly drawn 90% of ROI voxels (for smaller ROIs, there were
<2000 possible combinations). We then applied the LDA on each subset of voxels
and averaged the subset results to obtain the final classification accuracy for each
ROI. We performed two types of pattern classification to identify domain-general
and domain-specific components within each ROI. Note that with the within-
subject classification, the trained classifiers cannot be generalised to other subjects.

For the domain-general component, we performed a within-subject cross-task
classification. We trained the LDA classifier to distinguish Inhibit from Respond
conditions in one modality (e.g., No-Think from Think) and tested whether the
trained classifier could distinguish Inhibit from Respond in the other modality
(e.g., Stop from Go). Both training and testing data consisted of two (conditions)
by eight (runs) activation estimates for a set of voxels (e.g., 13 × 16 matrix for a set
of 13 voxels). For training and testing sets separately, for each voxel, we z-scored
the activity patterns across the 16 activation estimates setting the mean activity
within each voxel to zero. This way, each voxel represented only the relative
contribution of Inhibit vs Respond conditions within the Think/No-Think and
Stop-signal tasks. For each ROI subset, we performed the LDA twice. The first
classifier trained to discriminate Think from No-Think and returned the accuracy
of distinguishing Stop from Go; the second classifier trained to discriminate Stop
from Go and returned the accuracy of distinguishing Think from No-Think. The
final score was the average classification accuracy of all subsets and the two
classification variants (up to 2000 × 2) per ROI and subject.

For the domain-specific component, we trained and tested the within-subject
LDA classifier to distinguish No-Think from Stop conditions. The input data
consisted of two (conditions) by eight (runs) activation estimates for a set of voxels.
We z-scored the activity patterns across voxels for each event of interest. Thus, the
mean ROI activity for each event was zero, and each voxel represented only its
relative contribution to the given event. That way, we accounted for the univariate
intensity differences between No-Think and Stop conditions. For each ROI subset,
we performed leave-one-run out cross-validated LDA and averaged the
classification accuracies across the eight cross-validation folds. The final score was
the average classification accuracy of all subsets and cross-validation folds (up to
2000 × 8) per ROI and subject.

At the group level, for each ROI, we tested the data for normality (for all
domains and ROIs p > 0.05, confirming normality assumption) and performed
one-tailed t-tests to assess the statistical significance of classification accuracy being
above the 50% chance level (each classifier was distinguishing between two
conditions). All tests were Bonferroni corrected for the number of ROIs, and
adjusted p-values (padj) reported.
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A meta-analytic conjunction analysis of Stop-signal and Think/No-Think studies. To
acquire an independent mask of brain areas involved in domain-general inhibitory
control, we updated a previously published meta-analysis of Stop-signal and Think/
No-Think fMRI studies22. The study selection process and included studies are
reported in detail in ref. 22. From the original meta-analysis, we excluded the
current dataset8 and included a different within-subjects (but with each task per-
formed on different days) Stop-signal and Think/No-Think study from our lab123.
Consequently, our analysis included 40 Stop-signal and 16 Think/No-Think stu-
dies. We focused the meta-analysis on the conjunction of Stop > Go and No-
Think > Think contrasts which we conducted using Activation Likelihood Esti-
mation (ALE) with GingerALE v3.0.2 (http://www.brainmap.org/ale/124–127). We
used the same settings as reported before22. Specifically, we used a less conservative
mask size, a non-additive ALE method, no additional FWHM, and cluster analysis
peaks at all extrema. In addition, we set the coordinate space to MNI152.

First, we conducted separate meta-analyses of Stop > Go, No-Think > Think,
and their pooled data using cluster-level FWE corrected inference (p < 0.05, cluster-
forming threshold uncorrected p < 0.001, threshold permutations= 1000). We then
submitted the obtained thresholded ALE maps from the three individual meta-
analyses to a meta-analytic contrast analysis128, which produced the conjunction of
the Stop > Go & No-Think > Think contrasts. We thresholded the conjunction
results at voxel-wise uncorrected p < 0.001, with the p-value permutations of 10,000
iterations, and the minimum cluster volume of 200 mm3.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
We used a dataset from a previously published study8. The behavioural and group-level
imaging data have been deposited on the GitHub repository (https://github.com/dcdace/
Domain-general/) and are also available on Zenodo (https://doi.org/10.5281/
zenodo.5732892)104. Raw brain imaging data may be made available via data request at
MRC Cognition & Brain Sciences Unit, University of Cambridge (info@mrc-
cbu.cam.ac.uks). The raw imaging data cannot be made publicly available due to
Research Ethics Board restrictions for the current project. These data can only be shared
with researchers working on similar ethically-approved projects and requires managed
access. Source data are provided with this paper.

Code availability
The analysis code and notebooks have been deposited on the GitHub repository (https://
github.com/dcdace/Domain-general/) and are also available on Zenodo (https://doi.org/
10.5281/zenodo.5732892)104.
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